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Abstract. A theoretical model is suggested which describes phason imperfections (specific excitations) in
a quasiperiodic grain boundary in a polycrystalline solid as dilatation flexes. In the framework of the
model, an elastic stress field of the quasiperiodic grain boundary is calculated as a stress field created
by an ensemble of dilatation flexes (phason imperfections) located in the boundary. It is shown that
there is a special elastic interaction between crystal lattice defects and quasiperiodic grain boundaries
comprising phason imperfections. The strengthening effect in plastically deformed polycrystalline solids is
quantitatively described which is related to the special elastic interaction between lattice dislocations and
quasiperiodic grain boundaries.

PACS. 62.20.Fe Deformation and plasticity (including yield, ductility, and superplasticity) – 68.35.Ct
Interface structure and roughness – 68.35.Dv Composition; defects and impurities

1 Introduction

Periodic grain boundaries in polycrystalline solids repre-
sent the traditional subject of intensive theoretical and
experimental studies in materials science and solid state
physics [1,2]. Periodic boundaries are well-known to essen-
tially influence physical and mechanical properties of poly-
crystalline solids. In the general situation, polycrystals
contain not only periodic but also quasiperiodic bound-
aries [3–10]. At present, features of polycrystals with
quasiperiodic boundaries are little-known; their study is
just at the starting point.

The structure and properties of quasiperiodic grain
boundaries characterized by irrational disorientation pa-
rameters are different from those of “standard” periodic
boundaries [3–10]. However, presently available experi-
mental methods are weekly effective in the direct indi-
cation of the difference between periodic and quasiperi-
odic boundaries [4]. In other words, the presently avail-
able experimental methods, in fact, do not allow to di-
rectly and definitely recognize quasiperiodic boundaries
in polycrystals. In these circumstances, of utmost inter-
est are theoretical models which describe the features of
polycrystals with quasiperiodic boundaries. Such models
allow to theoretically reveal the contributions of quasiperi-
odic boundaries to the macroscopic properties of polycrys-
talline solids, in which case the models can serve as a basis
for indirect experiments (related to the measurements of
values characterizing the macroscopic properties of poly-
crystals) capable of recognizing quasiperiodic boundaries
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in polycrystals. In this context, recently, the special con-
tribution of quasiperiodic boundaries to intergrain sliding
processes in nanostructured polycrystals has been theoret-
ically revealed [8,9]. Results of the studies [8,9] serve as
an indirect confirmation of both existence and the specific
role of quasiperiodic boundaries in nanostructured poly-
crystals (in particular, in quasinanocrystalline solids being
nanostructured solids of a new type).

The main aim of this paper is to suggest a theoreti-
cal model which describes the elastic interaction between
crystal lattice dislocations and quasiperiodic boundaries
in polycrystals. In the framework of the suggested model,
a contribution to the strengthening of plastically deformed
polycrystals is calculated which is related to the above in-
teraction.

2 Features of quasiperiodic boundaries
in polycrystals

The notion of quasiperiodic grain boundaries is not wide-
spread. Therefore, in the first part of this section we,
following to [3–10], briefly discuss the basic features of
quasiperiodic grain boundaries. In spirit of the general
theory of quasiperiodic systems [11–13], a quasiperiodic
grain boundary in a crystal is defined as a translationally
ordered grain boundary having a reciprocal lattice with
rank (number of independent basic vectors1) larger than

1 Vectors Y1, . . . , Yp are called independent, provided the ex-
pression r1Y1 + · · ·+ rpYp = 0 (with rj being rational) is valid
for only case r1 = · · · = rp = 0.
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the dimension of this grain boundary. It means that diffrac-
tion pattern of a n-dimensional quasiperiodic boundary
consists of sharp peaks, each is unambiguously indexed
by m integers, where m > n. (Please let us remind that
any n-dimensional periodically ordered grain boundary
has diffraction pattern consisting of sharp peaks unam-
biguously indexed bym = n integers.) So, according to the
above definition, quasiperiodic grain boundaries, as with
periodic boundaries, have a long-range translational order;
it is reflected in the fact that diffraction patterns of both
quasiperiodic and periodic boundaries consist of sharp
peaks. However, the translational order of a quasiperi-
odic boundary is characterized by relationship (n < m)
between dimensions of a boundary (n) and its recipro-
cal lattice (m), which is different from the correspond-
ing relationship (n = m) inherent to periodic bound-
aries. In this context, quasiperiodic grain boundaries form
the specific (new) class of translationally ordered bound-
aries, being different from the (standard) class of peri-
odic grain boundaries, see, for details, [3,4,8]. (In general,
quasiperiodic grain boundaries too belong to the general
class of quasiperiodic systems such as quasicrystals [11–13]
and quasiperiodic grain boundaries in quasicrystals [14].
In doing so, n-dimensional systems with m-dimensional
(m > n) patterns are traditionally termed “quasiperiodic”
in mathematics [15].)

As to geometry and conditions of formation of quasi-
periodic grain boundaries, they are formed when there is
an irrational misorientation (characterized by irrational
Euler angles) between adjacent grains and/or boundary
plane is irrationally oriented relative to adjacent grains,
see, for details, [3,4]. Generally speaking, quasiperiodic
boundaries can be plane or curved.

In spirit of structural-unit model [16], quasiperiodic
boundaries can be represented as quasiperiodically orde-
red ensembles of structural units. So, quasiperiodic tilt
boundaries are effectively modeled as quasiperiodic se-
quences of structural units of two types2, A and B (Figs. 1a
and b) [4,10].

Quasiperiodic grain boundaries (as with other quasi-
periodic systems [11–14]) have not only standard transla-
tional degrees of freedom but also so-called phason degrees
of freedom [3,4,8]. In terms of structural-unit model of
quasiperiodic boundaries, the phason degrees of freedom
of a quasiperiodic boundary are associated with those re-
arrangements of structural units (for instance, A↔ B in-
terchanges) which do not change diffraction pattern of this
boundary [2,4,8]. On the other hand, these (phason-type)
rearrangements transform the initial quasiperiodic bound-
ary structure to a new quasiperiodic boundary structure
being locally indistinguished from the initial structure or,
in other terms, being locally isomorphic [8–10] to the ini-
tial structure.

2 The term “quasiperiodic sequence of structural units” is
used here in the following sense: 1-dimensional sequence (lat-
tice) of δ-functions — nodes of segments, A and B, which model
structural units — is quasiperiodic; its Fourier image is a re-
ciprocal lattice generated by two relatively irrational basic vec-
tors.

Fig. 1. Quasiperiodic tilt boundaries (structural unit represen-
tation). (a) A perfect quasiperiodic tilt boundary is modelled
as a quasiperiodic consequence of A and B structural units.
One cannot find any periodically repeated finite-length motif
(a finit-length “word” made out of an alphabet of letters A
and B) in the boundary. (b) A new perfect quasiperiodic tilt
boundary resulted from the initial boundary (shown in Fig. 1a)
in which an interchange A ↔ B occurs. The initial and new
boundaries are locally indistinguished. It means that any finite-
length fragment of the new boundary (Fig. 1b) can be found
in the initial boundary (Fig. 1a).

Two (infinite) quasiperiodic systems Z1 and Z2 are
defined as locally isomorphic (locally indistinguished), if
any finite fragment of the system Z1 can be found in the
system Z2 and vice versa [11–13]. In this event, the sys-
tem Z1 as a whole, generally speaking, is different from
the system Z2; the system Z1 can not be obtained as
a result of some translation of the system Z2. For in-
stance, the phason degrees of freedom of a quasiperiodic
tilt boundary, represented as a quasiperiodic consequence
of A and B structural units, are associated with A ↔ B
interchanges which transform the quasiperiodic boundary
to a new boundary being locally indistinguished from the
initial boundary (Figs. 1a and b).

Phason-type rearrangements of structural units of a
(infinite-length) quasiperiodic boundary leave its free en-
ergy as invariant [8]. However, in general, there are too re-
arrangements of structural units of a quasiperiodic bound-
ary which increase its free energy. Such rearrangements
result in formation of the so-called phason imperfections
being specific excitations of quasiperiodic boundaries (see
next section).

3 Phason imperfections as dilatation flexes

As noted in previous section, quasiperiodic boundaries can
contain specific (inherent to only quasiperiodic systems)
excitations, the so-called phason imperfections [4,7]. The
phason imperfections in a quasiperiodic boundary are as-
sociated with special boundary fragments being locally
distinguished from perfect boundary structures. In the
general situation, by direct analogy with phason imperfec-
tions in quasicrystals [11–13,17], we characterize phason
imperfections in quasiperiodic boundaries as follows [7].
Phason imperfections in a quasiperiodic boundary repre-
sent flexes comprising point excitations (Fig. 2). Each such
excitation is a point where the ideal (low-energy) packing
of structural units of the boundary is broken; “wrong”
packing is realized in the point excitation which, there-
fore, creates a short-range stress field and is specified by
some excess energy. In other words, a phason imperfection
in a quasiperiodic grain boundary, in many respects, looks
like a flex of grain boundary impurities (Fig. 2).
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Fig. 2. Representation of a phason imperfection as a flex com-
prising point excitations (whose properties are close to those
of grain boundary impurities).

The exact structure of the point excitations being con-
sistent of phason imperfections can vary rather widely, de-
pending on the structure of a quasiperiodic boundary. For
definiteness, we restrict our consideration to only vacancy-
like and intersite-like excitations with the properties of
vacancy-like impurities and intersite-like impurities, re-
spectively. We do it, since vacancy-like and intersite-like
impurities are typical grain boundary excitations (related
to wrong packings of boundary structural units) and are
most powerful sources of stresses as compared with grain
boundary impurities of other types.

Then, in the framework of the suggested model, pha-
son imperfections are treated as chains of either vacancy-
like excitations or intersite-like ones. Elastic stress fields
of such chains can be effectively modelled as those of di-
latation flexes. In this case, a dilatation flex represents
a strained cylinder with proper elastic deformation being
a pure dilatation (pure expansion or pure compression),
located in an elastic medium. A fibre composite mate-
rial, whose fibres have the thermal expansion coefficient
being different from that of matrix, serves as the char-
acteristic example of a material with dilatation flexes. In
context of the suggested model, the two following types of
dilatation flexes are present in a quasiperiodic boundary:
vacancy-type dilatation flexes (corresponding to phason
imperfections comprising vacancy-like point excitations)
and intersite-like dilatation flexes (corresponding to pha-
son imperfections comprising intersite-like excitations).

4 General features of special interaction
between quasiperiodic boundaries and
lattice defects

In previous section we have constructed a model repre-
sentation of phason imperfections in a quasiperiodic grain
boundary as dilatation flexes. In this context, the dilata-
tion flexes are boundary excitations characterized by elas-
tic stress fields which determine the elastic stress field of
the quasiperiodic boundary. As a corollary, the quasiperi-
odic boundary containing dilatation flexes (phason imper-
fections) is capable of elastically interacting with crystal
lattice defects (dislocations and disclinations) located near
the boundary.

The elastic interaction between lattice defects and a
quasiperiodic boundary, described as the interaction be-
tween lattice defects and an ensemble of dilatation flexes
(phason imperfections) in the boundary, is rather special.
This interaction is inherent to only quasiperiodic grain
boundaries and has not analogue for periodic boundaries,
since phason imperfections are inherent to only quasiperi-
odic boundaries.

Fig. 3. An edge dislocation is located near a quasiperiodic
grain boundary (shown as layer with thickness 2r0) compris-
ing vacancy-type and intersite-type dilatation flexes (shown as
open and full circles with radius r0, respectively). The disloca-
tion coordinates are (x = x1, y = 0).

A quantitative description of the special elastic interac-
tion allows to (indirectly) recognize some specific features
of quasiperiodic grain boundaries, which differ quasiperi-
odic boundaries from periodic ones. Below we quantita-
tively describe the special interaction between quasiperi-
odic boundaries and lattice dislocations. In doing so, the
particular attention is paid to the strengthening effect,
related to the special interaction, in plastically deformed
polycrystalline solids.

Let us consider a quasiperiodic grain boundary com-
prising dilatation flexes (phason imperfections) under
thermally equilibrium conditions. Spatial distribution of
dilatation flexes in the boundary depends on tempera-
ture, geometric characteristics of the boundary and an
external stress field. In following sections we shall exam-
ine the particular situation in which the external stress
field is created by a lattice edge dislocation located near
the quasiperiodic boundary. A quantitative description of
this situation consists of three basic stages. First, we shall
calculate the stress field of one dilatation flex (Sect. 5).
Second, we shall calculate the stress field of the quasiperi-
odic boundary as a sum of the stress fields of dilatation
flexes located in the boundary (Sect. 6). Finally, we shall
calculate the shear stress acting on dislocation (Fig. 3) due
to the special elastic interaction between the dislocation
and the quasiperiodic boundary (Sect. 7).

It should be noted that lattice dislocations located near
a quasiperiodic boundary not only elastically interact with
the boundary but also can create new phason imperfec-
tions in the boundary [7]. Occurrence and contribution of
this effect to the strengthening of a plastically deformed
polycrystalline solid depend on the structure and proper-
ties of the quasiperiodic boundary. For instance, the effect
in question does not occur in quasiperiodic tilt boundaries
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Fig. 4. A dilatation flex (shown as circle with radius r0) in an
elastic medium. −ε is the dilatation eigenstrain of the flex.

and is insignificant in quasiperiodic boundaries compris-
ing high-density ensembles of “standard” phason imper-
fections (which are not related to presence of lattice dislo-
cations near quasiperiodic boundaries). In this paper we
restrict our consideration to the situations in which the
dislocation-induced generation of new phason imperfec-
tions are not essential.

5 Elastic stress field of dilatation flex
(phason imperfection)

Consider a dilatation flex serving as a model for a phason
imperfection in a quasiperiodic grain boundary. Elastic
stress field of the dilatation flex can be calculated in the
same standard way as thermally induced elastic stresses
when two elastic solids contact, having different coeffi-
cients of thermal expansion [18,19].

In doing so, let us consider a deformed cylinder with
the radius r0 and the length L (L � r0), which is lo-
cated in an elastic medium being free from other sources
of stresses (Fig. 4). Let G and ν be respectively the shear
modulus and the Poisson ratio for both the cylinder and
the elastic medium. Let the eigenstrain of the cylinder
be pure dilatation ε∗ij = −εδij, where δij is the Croneker
function (δij = 1 if i = j and δij = 0 if i 6= j). Then the
total resulting strain fields are as follows,

ε
(1)
ij = e

(1)
ij + ε∗ij = e

(1)
ij − εδij , (1)

ε
(2)
ij = e

(2)
ij , (2)

where e
(k)
ij is the elastic part of the strain field which acts

in kth area, k = 1, 2 (Fig. 4).
Due to the central symmetry of the problem, the shear

components of the elastic strain field are equal to zero in
the cylindrical co-ordinate system and we have the follow-
ing set of normal strain components:

ε(1)
rr = e(1)

rr − ε , ε(1)
ϕϕ = e(1)

ϕϕ − ε , ε(1)
zz = e(1)

zz − ε , (3)

ε(2)
rr = e(2)

rr , ε(2)
ϕϕ = e(2)

ϕϕ , ε(2)
zz = e(2)

zz . (4)

The tensor of total strains is by definition ε
(k)
ij =

[gradu
(k)
i ]s, where u

(k)
i is the vector of total displacements

in kth area and the symbol [. . . ]s means the symmetric
part. It gives in our case

ε(k)
rr =

∂u
(k)
r

∂r
, ε(k)

ϕϕ =
u

(k)
r

r
, ε(k)

zz =
∂u

(k)
z

∂z
≡ 0 .

(5)

The elastic stress tensor is

σ
(k)
ij = 2G

(
e

(k)
ij +

ν

1− 2ν
e(k)

)
(6)

with e(k) = e
(k)
ii ; it may be presented as

σ(1)
rr = 2G

(
ε(1)
rr +

ν

1− 2ν
ε(1) +

1 + ν

1− 2ν
ε

)
, (7)

σ(1)
ϕϕ = 2G

(
ε(1)
ϕϕ +

ν

1− 2ν
ε(1) +

1 + ν

1− 2ν
ε

)
, (8)

σ(1)
zz = 2G

νε(1) + (1 + ν)ε

1− 2ν
, (9)

σ
(2)
ij = 2G

(
ε

(2)
ij +

ν

1− 2ν
ε(2)

)
, (10)

where ε(k) = ε
(k)
ii .

Introducing equations (7–10) into the standard equi-
librium equation [18]

∂σrr

∂r
+
σrr − σϕϕ

r
= 0 (11)

and taking into account equations (5), one can find the
following equilibrium equation for displacements

d2u
(i)
r

dr2
+

1

r

du
(i)
r

dr
−
u

(i)
r

r2
= 0 . (12)

It is very simply to show, using the differential chain rule,
that this equation have a solution in the form

u(k)
r = Ak r +

Bk

r
, (13)

where Ak and Bk are constants which should be obtained
from the boundary conditions of our problem. These ones
are as follows

u(1)
r (r = 0) is limited, (14)

u(2)
r (r =∞) is limited, (15)

u(1)
r (r = r0) = u(2)

r (r = r0) , (16)

σ(1)
rr (r = r0) = σ(2)

rr (r = r0) . (17)

As a result,

A1 = −
1 + ν

1− ν

ε

2
, A2 = 0 , B1 = 0 ,

B2 = −
1 + ν

1− ν

ε

2
r2
o , (18)
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and we find through (5) and (7–10) the required solution

σij(r) which is equal to σ
(1)
ij when r < r0 and to σ

(2)
ij when

r > r0, in the following form:

σrr(r) = σ∗
{

1, 0 ≤ r < r0,
r2
0/r

2, r > r0,
(19)

σϕϕ(r) = σ∗
{

1, 0 ≤ r < r0,
−r2

0/r
2, r > r0,

(20)

σzz(r) = σ∗
{

2, 0 ≤ r < r0,
0, r > r0,

(21)

where σ∗ = Gε 1−ν
1+ν . The cases ε > 0 and ε < 0 corre-

spond to vacancy-type and intersite-type dilatation flexes,
respectively.

From (19–21), for r0 ≈ a (with a being the crystal
lattice parameter) and r > r0, we find the stress field
components σxx, σyy and σxy in Cartesian coordinates
(x, y, z) to be as follows:

σxx = −σyy = σ∗r2
0(x2 − y2)/r4,

σxy = σ∗r2
02xy/r4. (22)

The other components of the dilatation flex stress tensor
in Cartesian coordinates are equal to zero.

6 Continuum model of quasiperiodic grain
boundary

Let us consider a quasiperiodic grain boundary which con-
tains both vacancy-type and intersite-type phason imper-
fections. In the framework of the suggested model, the
boundary is thought of as a three-dimensional flat layer
with the thickness 2r0, the vacancy-type and intersite-
type phason imperfections are viewed as vacancy-type and
intersite-type dilatation flexes, respectively (Fig. 3). In the
continuum representation, an ensemble of the dilatation
flexes in the boundary is characterized by the flex distri-
bution densities ρk(y) being continuous functions of the
boundary coordinate y, where k = v, i is the index showing
the vacancy-type (v) or intersite-type (i), of the dilatation
flexes.

We consider the quasiperiodic boundary under ther-
mally equilibrium conditions, in which case the densities
ρk(y) are “equilibrium” ones; they correspond to the min-
imum free energy of the solid. In a three-dimensional qua-
sicrystal [20], the number of flexes nk of kth type tran-
secting a flat unit square surface which is normal to their
axes, is equal to

nk = N exp

(
−
Eel
k

kT

)
, (23)

where N is the number of atomic positions at the surface,
Eel
k the elastic energy of a flex per its segment with the

length b, k the Boltzmann constant and T the absolute
temperature.

The elastic energy Eel
k may be found using the well-

known expression for an inclusion with uniform dilatation
eigenstrain ε [19], in which case

Eel
k =

πG

2

1 + ν

1− ν
ε2k b

3 . (24)

In the case when the dilatation flexes are distributed with-
in a three-dimensional flat layer (a grain boundary model)
which is placed in a stress field of an edge dislocation, the
densities (per a unit square) Cv and Ci of vacancy- and
intersite-type flexes may be written, in the first approxi-
mation, as follows

Cv(x = 0, y > 0) = Cv0 exp

(
σ(d)(y) ∆Vv

kT

)
, (25)

Ci(x = 0, y < 0) = Ci0 exp

(
σ(d)(y) ∆Vi

kT

)
, (26)

where Cv0 and Ci0 are respectively the densities of vacan-
cy- and intersite-type flexes in the situation when the dis-
location stress field is absent, Ck0 = nk/(Nb

2); ∆Vk de-
notes the change in the volume of the solid, related to
the formation of a unit length flex, ∆Vk ≈ −

3
4 πεk b

3

(∆Vv < 0, ∆Vi > 0); σ(d) = σ(d)(y) is the hydrostatic
component of the dislocation stress field in the plane x = 0
(Fig. 3). This component can be written as [21]:

σ(d)(x = 0, y) = −
Gb

3π

1 + ν

1− ν

y

x2
1 + y2

· (27)

Here b denotes the dislocation Burgers vector, x1 the dis-
location coordinate on axis 0x (Fig. 3). Formulae (25, 26),
in particular, reflect the fact that the dislocation stress
field causes vacancy-type flexes (intersite-type flexes, re-
spectively) to be located in the region y > 0 (y < 0, re-
spectively) where the hydrostatic component (27) of the
dislocation stress field is negative (positive, respectively).

Then the linear density of flex distribution along the
grain boundary may be naturally approximated as ρk =
2r0Ck(x = 0, y). As a result, one can represent the elas-
tic stress field of the quasiperiodic boundary as σΣmn =

σ
Σ(v)
mn + σ

Σ(i)
mn , where the sum stress field of vacancy-type

dilatation flexes is

σΣ(v)
mn (x, y) = 2 r0

+∞∫
δ

Cv(y′)σ(v)
mn(x, y − y′) dy′, (28)

while the sum stress field of intersite-type dilatation flexes
is

σΣ(i)
mn (x, y) = 2 r0

−δ∫
−∞

Ci(y
′)σ(i)

mn(x, y − y′) dy′. (29)

The parameter δ is introduced here to avoid the stress and
flex density singularities at the point (x = 0, y = 0) when
the dislocation is localized there. It may be estimated from
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the condition bρk = b2Ck(x1, y) ≤ 1 which means that no
more than only one flex may occupy an atomic position
along the grain boundary. A simple calculation shows that
δ must satisfy to the inequality δ2 +x2

1 ≥ δb/|2πεk|, where
x1 is the dislocation position. Assuming |εk| ≥ 0.05, we
can find δ ≈ b as a good estimate when x1 ≥ b for any
value of temperature T .

7 Force acting on dislocation

The elastic force, acting on a unit-length edge dislocation
located near a quasiperiodic grain boundary (Fig. 3), can
be expressed as follows:

F (x1) = bσΣxy(x = x1, y = 0), (30)

where the stress field σΣxy of the boundary is determined
by formulae (22, 25–29).

In the approximation in which distribution of vacancy-
type and intersite-type dilatation flexes is symmetric rela-
tive to axis 0x (the approximation corresponds to a rather
realistic situation in which changes in the volume of the
solid, related to formation of vacancy-like and intersite-
like excitations, are close: ∆Vv ≈ −∆Vi; this approxima-
tion does not essentially influence final results of our cal-
culations but, at the same time, allows us to carry out
the calculations in a compact form), formula (30) can be
rewritten as:

F (x1) = 2bσΣ(v)
xy (x = x1, y = 0), (31)

where

σΣ(v)
xy (x1) = −4σ∗r3

0 x1Cv0

+∞∫
δ

y′

(x2
1 + y′2)2

× exp

(
Dy′

x2
1 + y

′2

)
dy′, (32)

and D = −Gb∆Vv

3πkT
1+ν
1−ν > 0. With formulae (31, 32) and

the above estimate for δ taken into account, the force F
can be expressed as follows:

F (ξ) = −8σ∗r3
0 Cv0 ξ

+∞∫
1

η

(η2 + ξ2)2

× exp

(
qη

η2 + ξ2

)
dη, (33)

where new dimensionless parameters ξ = x1/b , η = y′/b
and q = D/b are used.

For vacancy-type dilatation flexes, σ∗ > 0 and integral
on the r.h.s. of (33) is evidently positive. In this case, the
force F (ξ) ≤ 0 for any ξ ≥ 0. It means that the quasiperi-
odic boundary attracts the dislocation due to the special
elastic interaction between them.

Fig. 5. Dependence of the stress τ , GPa, which acts on an
edge dislocation due to the special elastic interaction between
the dislocation and a quasiperiodic grain boundary, on the
dislocation position ξ = x1/b for the values of temperature
T = 100 (1), 300 (2), 800 (3) and 1300 K (4). The value
ξ = 1.57 denotes the boundary of the region |ξ| ≥ 1.57 where
our model is correct.

Function F (ξ) is antisymmetric, and F (ξ=0)=F (ξ=
±∞) = 0. Integral on the r.h.s. of (33), which determines
value of the force F (ξ), can be calculated only numerically.
It is worth noting that two parameters figuring in formula
(33), Cv0 and q, depend strongly on the temperature T .

To represent our results in more convenient form, let us
consider the effective shear stress τ(ξ, T ) = F (ξ, T )/b act-
ing on the dislocation from the quasiperiodic grain bound-
ary. For characteristic values of G = 90 GPa, ν = 0.3,
εv ≈ 0.05 and 2r0 = b = 3 Å, we obtain the following
expression for τ(ξ, T ),

τ(ξ, T ) = −8.357 exp

(
−

1304.350

T

)
ξ

×

+∞∫
1

η

(η2 + ξ2)2
exp

(
4087.733

T

η

η2 + ξ2

)
dη , (34)

given in GPa.
Results of numerical calculations are presented in Fig-

ure 5 for T = 100, 300, 800 and 1300 K. They are in-
dicative of the facts that the stress τ(ξ, T ) has two ex-
treme values for the dislocation positions near the bound-
ary (0 < |ξ| < 1) and that the increase of T leads to
the abrupt decrease of τ(ξ, T ) when |ξ| < 1.5, and to its
increase when |ξ| > 1.5. However, there is no sense to con-
sider the region |ξ| < 1.57 because our continuum model
does not work there (the condition ρkb ≤ 1 is satisfied only
for |ξ| ≥ 1.57 for any temperature). Such a temperature
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(a) (b)

(c) (d)

Fig. 6. Distribution of vacancy-like dilatation flexes along the quasiperiodic boundary for the values of temperature T = 100 (1),
300 (2), 800 (3) and 1300 K (4), and for different dislocation positions: ξ = 1.57 (a), 2 (b), 5 (c) and 10 (d).

dependence of τ(ξ, T ) is explained by a very strong expo-
nential dependence of dilatation flex density ρk on T . It
is seen from the curves in Figure 6 where the distribution
of vacancy-like dilatation flexes along the axes η = y/b is
shown for the dislocation positions ξ = 1.57, 2, 5 and 10,
and temperatures T = 100, 300, 800 and 1300 K.

The above results of our calculations of the stress τ(ξ,
T ) allow us to describe the behaviour of a lattice disloca-
tion which moves under an external shear stress τex action.
The two stresses act on the dislocation which are the con-
stant stress τex and the ξ-dependent stress τ(ξ) = τ(ξ, T =
300 K) (Fig. 7). In general, there are four following situa-
tions with the dislocation, depending on its position ξ as
well as on direction and value of the stress τex:

(i) The situation: ξ < 0, τex acts on the dislocation in
direction to the quasiperiodic boundary. Both the stresses
τ(ξ) and τex act in one direction (Fig. 7), causing the

dislocation to move in this direction to the quasiperiodic
boundary.

(ii) The situation: ξ > 0, the force τex acts in direc-
tion being opposite to the quasiperiodic boundary, τex =
τex1 < |τmax| = |τ(ξ = 1.57)|. In this situation, the stresses
τ(ξ) and τex1 act in opposite directions, causing the ex-
istence of two equilibrium positions, stable position ξst

eq

and unstable one ξunst
eq , of the dislocation. The stable po-

sition is fixed, ξst
eq = 0, while the unstable one is obtained

through the condition τ(ξunst
eq ) = −τex1 (Fig. 7). The po-

sition ξst
eq = 0 is stable relative to small displacements

(±ζ) of the dislocation in any direction, since τ(ξ − ζ <
0) + τex1 > 0 and τ(ξ + ζ > 0) + τex1 < 0. The disloca-
tion located in the stable equilibrium position can “jump”
with the help of thermal fluctuations into the unstable
position, if value of τex1 is slightly smaller than of |τmax|
and if the distance d between the stable and unstable
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Fig. 7. Scheme illustrating the cooperative action of either the
stress τ (ξ) and τex1 or the stresses τ (ξ) and τex2 on a lattice dis-
location. Curve τ (ξ) is shown for the temperature T = 300 K.
τex1 and τex2 are the external constant stresses. ξst

eq = 0 and
ξunst
eq are the stable and unstable equilibrium positions of the

lattice dislocation, respectively. The dashed lines denote the
extreme values of τ (ξ) which are achieved in the model and
correspond to the dislocation positions ξ ≈ ±1.57.

positions (Fig. 7) is small (≈ several lattice parameters). If
the above conditions are invalid, the dislocation is “firmly
locked” in the stable equilibrium position at the quasiperi-
odic boundary.

(iii) The situation: ξ > 0, the stress τex acts in direc-
tion being opposite to the quasiperiodic boundary, τex =
τex2 > |τmax| = |τ(ξ = 1.57)|. In this situation, the dislo-
cation moves in the direction being opposite to the quasi-
periodic boundary. The stress τex2 serves as the driving
force for the dislocation motion. The stress τ(ξ) hampers
the dislocation motion, contributing to the strengthening
of a plastically deformed polycrystal.

(iv) The trivial situation: τex = 0. The dislocation un-
der action of the stress τ(ξ) moves to the quasiperiodic
boundary for any ξ.

The situations (i) and (ii) are indicative of the non-
standard features of lattice dislocations moving near
quasiperiodic boundaries. Actually, when the external
stress τex = τex1 < |τmax| (situations (i) and (ii)), lat-
tice dislocations easily move in one grain adjacent to a
quasiperiodic boundary, while lattice dislocations in an-
other grain adjacent to the boundary are stopped in the
stable equilibrium position at the boundary. These non-
standard features of lattice dislocations near quasiperiodic
boundaries can be used in experiments concerning an in-
direct detection of quasiperiodic boundaries in polycrys-
talline solids.

In the situations (ii) and (iii) quasiperiodic bound-
aries serve as strengthening elements. Let us estimate the
shear stress τs characterizing the strengthening effect due
to quasiperiodic boundaries, that is, the strengthening ef-
fect related to the special elastic interaction between lat-
tice dislocations and quasiperiodic boundaries. This stress
by definition is τs = −τ(ξ, T ). From (34), for character-
istic values of G = 90 GPa, ν = 0.3, εv ≈ 0.05 and
2r0 = b = 3 Å, we find for the dislocation position ξ = 1.57
and temperatures T = 100, 300, 800 and 1300 K that
τ(ξ = 1.57) ≈ −0.53, −0.77, −0.97 and −1.05 GPa, ac-
cordingly. Thus, for mean temperatures, we can estimate
τs ≈ 1 GPa = G/90.

The value of M |τs| ≈ G/45 (where M ≈ 2 is the stan-
dard orientational factor) is much higher than the flow
stress σ ≈ G/300 − G/120 which usually specifies first
stages of plastic deformation in metallic polycrystalline
solids. This is indicative of the fact that the presence
of quasiperiodic boundaries in polycrystalline solids can
cause the non-standard strengthening of such solids. The
above fact can be used in experiments concerning the in-
direct detection of quasiperiodic grain boundaries in poly-
crystals.

8 Concluding remarks

In this study it has been shown that there is a special
elastic interaction between crystal lattice dislocations and
quasiperiodic grain boundaries in polycrystalline solids.
The special interaction is related to the presence of phason
imperfections (specific excitations), which create elastic
stress fields, at quasiperiodic grain boundaries and causes
lattice dislocations to be attracted to such boundaries.
This interaction is inherent to only quasiperiodic bound-
aries and has not analogue for periodic ones, since pha-
son imperfections are present in only quasiperiodic bound-
aries.

For the calculation of elastic stress fields of phason
imperfections, the model has been suggested which de-
scribes phason imperfections in a quasiperiodic boundary
as dilatation flexes. In the framework of the model, exact
formulae have been obtained for the elastic stress field of
the quasiperiodic boundary as well as for the attraction
force F and stress τ acting on an edge dislocation located
near the quasiperiodic boundary. On the basis of these for-
mulae, we have estimated the shear stress τs which char-
acterizes the strengthening effect in polycrystals due to
quasiperiodic boundaries: τs is aboutG/90 (where G is the
shear modulus). This value is indicative of the fact that
quasiperiodic boundaries serve as special strengthening el-
ements capable of essentially contributing to the strength-
ening of plastically deformed polycrystalline solids.

Results of theoretical studies presented here, together
with results of studies [8,9] devoted to a theoretical de-
scription of quasiperiodic boundaries in nanostructured
polycrystals, can be effectively used in planning of
experiments related to identification of quasiperiodic
grain boundaries and their contributions to physical



M.Yu. Gutkin and I.A. Ovid’ko: Interaction of quasiperiodic boundaries with dislocations 437

and mechanical properties of polycrystalline solids (see
discussion in Sect. 7).
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